N1 BAS	IC GEOMET	RY NOTES (Lomac 2015-2016)	Name	N1
Diagram		Term point Notation/Name:	Description: Undefined term referring to a location in space with and has no sides. In drawings, points are represented by dots	Examples: Non-Examples:
Diagram A	В	Term line Notation/Name:	Description: Undefined Term that is a straight path extending in two opposite directions without end. It has infinite length, but only one dimension. A line contains infinitely many points	Examples: Non-Examples:
Diagram C A	ℓ B	Term Collinear Notation/Name:	Description: Points that are on the same line	Examples: Non-Examples:
Diagram C A	ℓ B D	Term non-collinear Notation/Name:	Description: Points that are not on the same line	Examples: Non-Examples:
Diagram P D A	B C ℓ	Term plane Notation/Name:	Description: Undefined term represented by a flat surface that extends without end in two dimensions, but has no thickness. A plane contains infinitely many lines	Examples: Non-Examples:
Diagram P D A	E B ^C	Term COPIANAT Notation/Name:	Description: Points that are on the same plane	Examples: Non-Examples:
Diagram P D A	E B Cℓ	Term non-coplanar Notation/Name:	Description: Points that are not on the same plane	Examples: Non-Examples:

	IC GEOMET	RY NOTES (Lomac 2015-2016		N2
Diagram	В	Term endpoint Notation/Name:	Description:	Examples:
А	D		A point that is at the end of a segment or ray	Non-Examples:
С				
Diagram A	В	Term ray Notation/Name:	Description: A part of a line, sometimes called a "half-line," that has one endpoint and extends infinitely in one direction	Examples: Non-Examples:
Diagram		Term	Description:	Examples:
C	D	line segment Notation/Name:	A part of a line with two endpoints, the distance between which can be measured	Non-Examples:
Diagram E C	D	Term midpoint Notation/Name:	A point on a line segment that is the same distance from one endpoint as it is from the other	Examples: Non-Examples:
Diagram		Term	Description:	Examples:
U P	M R	equidistant Notation/Name:	When the distance between a pair of points is the same as the distance between a different pair of points	Non-Examples:
Diagram		Term	Description:	Examples:
		construction Notation/Name:	Diagrams that are precisely drawn with a compass and straightedge	Non-Examples:
Diagram		Term compass and straightedge Notation/Name:	Description: Tools used to measure and copy distances and draw straight lines or segments	Examples: Non-Examples:

N3 CONSTRUC	TION NOTES (Lomac 2015-2016)	Name	N
Diagram	Term Circle Notation/Name:	Description: The set of all points that are a fixed distance from a central point	Examples: Non-Examples:
Diagram	Term radius Notation/Name:	Description: A segment connecting the center of a circle to a point on the circle	Examples: Non-Examples:
Diagram	Term figure Notation/Name:	Description: A 2-dimensional figure is a set of points in a plane	Examples: Non-Examples:
Diagram	Term equilateral Notation/Name:	Description: figure for which all sides are the same length	Examples: Non-Examples:
Diagram B A	Term line assumption Notation/Name:	Description: 2 distinct points determine exactly 1 line	Examples: Non-Examples:
Diagram	Term plane assumption Notation/Name:	Description: 3 non-collinear points determine exactly 1 plane	Examples: Non-Examples:
Diagram	Term plane separation assumption Notation/Name:	Description: Points contained in a plane that are not on a line form 2 sets called half planes	Examples: Non-Examples:

	ION NOTES (Lomac 2015-2016)	Name	N4
Diagram	Term distance (length) assumption Notation/Name: AB or abs(AB)	Description: For every pair of points A and B, there is a corresponding distance from A to B.	Examples: Non-Examples:
Diagram	Term	Description:	Examples:
A	coincide Notation/Name:	points coincide if the distance between them is 0	Non-Examples:
В			
Diagram	Term ruler assumption	Description:	Examples:
	Notation/Name:	Every line has a coordinate system	Non-Examples:
Diagram	Term	Description: Two rays that share a	Examples:
	angle Notation/Name: ×	common endpoint. Angles are formed when a ray is copied and rotated some number of degrees around its endpoint	Non-Examples:
Diagram	Term	Description:	Examples:
°	angle measure assumption (degree) Notation/Name:	There is a measure of number of degrees of rotation for each angle	Non-Examples:
Diagram	Term	Description: An angle divides a plane into	Examples:
	Angle interior/exterior Notation/Name:	two sets of points, the interior set (inside the angle) and the exterior set (outside the angle)	Non-Examples:
Diagram	Term	Description:	Examples:
	bisect Notation/Name: x	to divide into two pieces that are equal in measure segments or angles can be bisected	Non-Examples:

N5 CONSTRUCTION	NOTES (Lomac 2015-2016)	Name	N5
Diagram TU QVV RS	Term Congruent Notation/Name:	Description: Formal: Two figures such that 1 can be mapped onto the other through rigid transformations Informal: Two figures that are the exact size and shape	Examples: Non-Examples:
Diagram	Term Vertex Notation/Name:	Description: the common endpoint shared by the two rays that form an angle	Examples: Non-Examples:
Diagram	Term zero angle Notation/Name:	Description: an angle whose measure is 0°	Examples: Non-Examples:
Diagram	Term acute angle Notation/Name:	Description: an angle whose measure is between 0° and 90°	Examples: Non-Examples:
Diagram	Term right angle Notation/Name:	Description: an angle whose measure is 90°	Examples: Non-Examples:
Diagram	Term obtuse angle Notation/Name:	Description: an angle whose measure is between 90° and 180°	Examples: Non-Examples:
Diagram	Term straight angle Notation/Name:	Description: an angle whose measure is 180°	Examples: Non-Examples:

Term	Description:	Examples:
adjacent angles Notation/Name:	Ray UY drawn through point Y in the interior of angle XUZ	
	divides XUZ into two angles XUY and ZUY which are called adjacent angles	Non-Examples:
Term adjacent angle sum	Description: The sum of the measures of	Examples:
assumption Notation/Name:	adjacent angles is equal to the measure of the angle that was divided PQS + RQS = PQR	Non-Examples:
Term	Description:	Examples:
IINEAR PAIR Notation/Name:	Two adjacent angles formed by dividing a straight angle. The two angles are supplementary	Non-Examples:
Term	Description:	Examples:
Supplementary angles Notation/Name:	Two angles whose measures sum to 180°	Non-Examples:
Term isosceles	Description:	Examples:
Notation/Name:	A figure for which two sides are the same length	Non-Examples:
Term parallal lines	Description:	Examples:
paramet mies Notation/Name:	Two lines in a plane that never intersect because their distance from one another is constant	Non-Examples:
Term nernendicular lines	Description:	Examples:
Notation/Name:	Two lines in a plane that intersect at right angles	Non-Examples:
	Term adjacent angle sum assumption Notation/Name: Term Term linear pair Notation/Name: Term Term supplementary angles Notation/Name: Notation/Name: Term isosceles Notation/Name: Term Term parallel lines Notation/Name: Term Term parallel lines Notation/Name: Term	Image: Term divides XUZ into two angles XUY and ZUY which are called adjacent angles Image: Term Description: Notation/Name: The sum of the measures of adjacent angles is equal to the measure of the angle that was divided PQS + RQS = PQR Image: Term Description: Notation/Name: Description: Term Description: Notation/Name: Description: Term Description: Notation/Name: Description: Term Description: Term Description: Notation/Name: Description: Term Description: Term Description: Term Description: Term Sosceles Notation/Name: Description: Term Description: A figure for which two sides are the same length Term Description: Term

N7 CONSTR	UCTION NOTES (Lomac 2015-2016)	Name	N7
Diagram	Term point of concurrency Notation/Name:	Description: A location in which 3 or more lines intersect	Examples: Non-Examples:
Diagram	Term Circumcenter Notation/Name:	Description: A location in which the three perpendicular bisectors of the sides of a triangle intersect	Examples: Non-Examples:
Diagram	Term incenter Notation/Name:	Description: A location in which the three angle bisectors of a triangle intersect	Examples: Non-Examples:
Diagram	Term centroid Notation/Name:	Description: A location in which the three medians of a triangle intersect	Examples: Non-Examples:
Diagram	Term orthocenter Notation/Name:	Description: A location in which 3 the three altitudes of a triangle intersect	Examples: Non-Examples:
Diagram	Term Iocus Notation/Name:	Description: A set of points that meet specific criteria	Examples: Non-Examples:
Diagram	Term regular Notation/Name:	Description: When all sides of a figure are congruent and all angles of a figure are congruent (the figure must be composed of non-intersecting segments)	Examples: Non-Examples:

N8 HOW AM I DOING (Lomac 2015-2016)

Name_____

(RAC) Rubric for Assessing Constructions

	Advanced (4)	Proficient (3)	Developing (2)	Emerging (1)
Arcs	All necessary arcs are present and precise. Any distances that must be measured and transferred are done so accurately.	All necessary arcs are present and fairly precise. Any distances that must be measured and transferred are done so with minor accuracy mistakes.	Arcs are present that show some understanding of their purpose in the construction. Some necessary distances are measured.	Arcs are not present or are not appropriate for the construction. Arcs are sketched.
Labels	All labels are present. Prime notation is used for any image unless otherwise specified.	Most labels are present. Prime notation is used for most images unless otherwise specified.	Most labels are present. Prime notation may be missing or intermittent.	Labels are mostly incomplete, incorrect, and/or unclear
Lines &	All necessary lines and segments are drawn with a	All necessary lines and segments are drawn and	All necessary lines and segments are drawn and	Some lines are appropriate. May contain confusing lines
Segments	straightedge and clearly and accurately connect 2 points.	they clearly and fairly accurately connect 2 points.	come close to connecting 2 points.	or segments that are unnecessary.
Distances	All necessary distances have been accurately measured/maintained.	All necessary distances have been measured/maintained.	Some necessary distances have been accurately measured/maintained. An accurate distance is measured/maintained, but not the needed distance.	Distances have not been measured/maintained or are not correctly measured.

(RAP) Rubric for Assessing Proof

	Advanced (4)	Proficient (3)	Developing (2)	Emerging (1)
Knowing the goal	The goal is clearly stated.	The goal is clearly implied.	The goal is loosely implied or slightly misinterpreted.	The goal is not stated or is misinterpreted.
Choosing the	All valid & relevant givens,	All relevant givens, and most	All relevant givens and at	
tools	assumptions & theorems are present. No distracting or irrelevant concepts are introduced. No concepts are incorrect.	assumptions & theorems are present. Distracting, irrelevant, or concepts are minimal. No concepts are incorrect.	least 1 assumption or theorem is present.	Not all givens are present and/or completely irrelevant assumptions, theorems, or concepts are present.
Using the tools	The purpose and placement of every given, assumption, and theorem is clear and valid.	The purpose and placement of most givens, assumptions, and theorems are clear and valid with only minor mistakes that do not significantly effect the validity of the proof.	For the givens, assumptions, and theorems that are present, the purpose and placement of them is clear and valid.	For the givens, assumptions, and theorems that are present, the purpose and placement of them is clear and valid.
Communicating the argument	Diagrams are neatly marked and connected to the argument with proper notation and relationships. Reasoning is articulate and expressed in coherent sentences that are neatly printed.	Diagrams are legibly marked and connected to the argument with proper notation and relationships. Reasoning is expressed in complete sentences that are legibly printed.	Diagrams are partially marked and loosely connected to the argument. Notation is not always correct. Reasoning has small gaps and expressed in legibly printed sentences.	Diagrams are partially marked or not marked. Reasoning has major gaps and/or is difficult to read or understand due to poorly articulated ideas or the failure to write legibly.

N8

TRANSFORMATION NOTES (L 2045 204C)

N9 TRANSFO	DRMATION NOTES (Lomac 2015-2010		N9
Diagram	Term Corresponding parts Notation/Name:	Description: Sides or angles of figures that are in the same relative location as one another	Examples: Non-Examples:
Diagram	Term rigid transformation Notation/Name:	Description: A function that, when applied to a figure in the plane, maps the figure onto the plane while preserving distance and angle measures	Examples: Non-Examples:
Diagram	Term preimage Notation/Name:	Description: a figure before it is transformed	Examples: Non-Examples:
Diagram	Term image Notation/Name:	Description: the figure resulting from a transformation or series of transformations of an existing figure	Examples: Non-Examples:
Diagram	Term reflection Notation/Name:	Description: A rigid transformation function that maps a figure to its image by "flipping" it across a line of reflection	Examples: Non-Examples:
Diagram	Term translation Notation/Name:	Description: A rigid transformation function that maps a figure to its image by "sliding" the figure a distance and direction as indicated by a given vector	Examples: Non-Examples:
Diagram	Term rotation Notation/Name:	Description: A rigid transformation function that maps a figure to its image by "turning" the figure a number of degrees around a point in a given direction	Examples: Non-Examples:

N10 RIGID MOT	ION DETAILS (Lomac 201	
Diagram	Term Rigid motion (transformation) Notation/Name:	A transformation of the plane is a function that assigns to each point of the plane a unique point in the plane. Rigid motions are transformations that preserve <u>length</u> of segments and <u>measure</u> of angles. A dilation is an example of a transformation that preserves <u>angle</u> measures but not the lengths of segments. In this lesson, we will work only with rigid transformations. We call a figure that is about to undergo a transformation the <u>preimage</u> while the figure that results from the transformation is called the <u>image</u> .
Diagram	Term Reflection	Description: Reflections are rigid motion functions of the plane such that: (a) Any point P on the line of the reflection maps to $_itself$ (P' = P) (b) Any point Q not on the line of reflection maps to Q' such that the line of reflection is the <u>perpendicular bisector</u> of $\overline{QQ'}$. Notation: $r_m(Q)$
	Notation/Name:	means reflect Q across line <i>m</i> . Q <i>m</i> Q'
Diagram	Term Rotation Notation/Name:	 Description: Reflections are rigid motion functions of the plane around a center point C such that: (a) The center of rotation, point C, maps to <u>itself</u> (C' = C) (b) Any point Q that is not the center of rotation maps to a point Q' on <u>circle</u> C with <u>radius</u> CQ such that m∠QCQ' is equal to the degree of the rotation. {which includes direction clockwise (negative) or counterclockwise (positive)} Notation: R_{C,30°}(Q) means rotate point Q 30° counterclockwise around point C.
Diagram	Term Translation	 Description: Translations are rigid motion <i>functions</i> of the plane along a vector (path) with distance and direction such that: (a) any point P on the line containing the vector maps to a point P' on the line so that PP' has the same distance and direction as the given
κ L	Notation/Name:	vector (b) any point Q not on the line containing the vector maps to a point Q' so that QQ' is on a line parallel to the line containing the vector and QQ' is the length and direction of the given vector on a line parallel to the given vector. Notation: $T \xrightarrow{AB} (Q)$ Q A B

N11 ANGLES NOT	ES (Lomac 2015-2016)	Name	T	_ N1
Diagram F B A H D E	Term transversal Notation/Name:	Description: A line that intersects two or more other lines	Examples: Non-Examples:	
Diagram F B A I H D E	Term corresponding angles Notation/Name: $ \leftrightarrow \cong$	Description: Angles formed by two lines and a transversal that are in the same relative location in regards to the transversal and the line the transversal intersects.	Examples: Non-Examples:	
Diagram F B A H D E	Term alternate exterior angles Notation/Name: $ \leftrightarrow \cong$	Description: Angles formed by two lines and a transversal that are outside of the two lines and on opposite sides of the transversal.	Examples: Non-Examples:	
Diagram F B A H D E	Term alternate interior angles Notation/Name: $ \leftrightarrow \cong$	Description: Angles formed by two lines and a transversal that are inside of the two lines and on opposite sides of the transversal.	Examples: Non-Examples:	
Diagram ^F G B A I H D E	Term same side interior angles Notation/Name: ↔ sum 180°	Description: Angles formed by two lines and a transversal that are inside of the two lines and on the same side of the transversal.	Examples: Non-Examples:	
Diagram	Term linear pair of angles Notation/Name:	Description: Two adjacent angles formed by dividing a straight angle. The two angles are supplementary	Examples: Non-Examples:	
Diagram B I H D E	Term vertical angles Notation/Name:	Description: A pair of non-adjacent angles formed by two intersecting lines.	Examples: Non-Examples:	

N12 ANGLES	NOTES (Lomac 2015-2016)	Name	N12
Diagram	Term auxiliary line Notation/Name:	Description: A line added to a diagram to help solve a problem	Examples: Non-Examples:
Diagram	Term adjacent angle addition Notation/Name:	Description: The sum of consecutive adjacent angles is equal to the measure of the angle that contains them	Examples: Non-Examples:
Diagram	Term adjacent angles on a line Notation/Name:	Description: The sum of consecutive adjacent angles on a line is 180°	Examples: Non-Examples:
Diagram	Term triangle sum Notation/Name:	Description: The sum of the angles in a triangle is 180°	Examples: Non-Examples:
Diagram	Term exterior angle of a triangle Notation/Name:	Description: The sum of the remote interior angles of a triangle is equal to the exterior angle	Examples: Non-Examples:
Diagram	Term base angles of an isosceles triangle Notation/Name:	Description: The base angles of an isosceles triangle are always congruent. The third angle is called the vertex angle	Examples: Non-Examples:
Diagram	Term consecutive adjacent angles around a point Notation/Name:	Description: The sum of the adjacent angles around a point is always 360°	Examples: Non-Examples:

N13 PROOF	NOTES (Lomac 2015-2016)	Name	N13
Diagram	Term SAS≅ Notation/Name:	Description: Two triangles are congruent if two pairs of corresponding sides and the pair of corresponding angles between the sides are congruent.	Examples: Non-Examples:
Diagram	Term ASA≃ Notation/Name:	Description: Two triangles are congruent if two pairs of corresponding angles and the pair of corresponding sides between the angles are congruent.	Examples: Non-Examples:
Diagram	Term SSS≃ Notation/Name:	Description: Two triangles are congruent if three pairs of corresponding sides are congruent.	Examples: Non-Examples:
Diagram	Term AAS≃ Notation/Name:	Description: Two triangles are congruent if two pairs of corresponding angles and a pair of corresponding sides not between the angles are congruent.	Examples: Non-Examples:
Diagram	Term HL≃ Notation/Name:	Description: Two triangles are congruent if a pair of corresponding angles are right angles, a pair of corresponding legs are congruent, and the pair of hypotenuses are congruent.	Examples: Non-Examples:
Diagram	Term SSA Notation/Name:	Description: Two triangles are NOT NECESSARILY congruent if two pairs of corresponding sides are congruent and pair of corresponding angles NOT between the sides are congruent.	Examples: Non-Examples:
Diagram	Term AAA Notation/Name:	Description: Two triangles are NOT NECESSARILY congruent if three pairs of corresponding angles are congruent.	Examples: Non-Examples:

N14 PROOF NOTES	S (Lomac 2015-2016)	Name	N14
Diagram	Term Triangle Sum Theorem Notation/Name:	Description: If three angles are the angles of a triangle, then the sum of the three angles is 180°	Examples: Non-Examples:
Diagram F B A H D E	Term Corresponding angles postulate Notation/Name:	Description: If lines are parallel then corresponding angles are congruent. Converse: If corresponding angles are congruent then lines are parallel.	Examples: Non-Examples:
Diagram F B A H D E	Term Alternate Exterior Angles Theorem Notation/Name:	Description: If lines are parallel then alternate exterior angles are congruent. Converse: If alternate exterior angles are congruent then lines are parallel.	Examples: Non-Examples:
Diagram F B A I H D E	Term Alternate Interior Angles Theorem Notation/Name:	Description: If lines are parallel then alternate interior angles are congruent. Converse: If alternate interior angles are congruent then lines are parallel.	Examples: Non-Examples:
Diagram ^F G B A I H D E	Term Same Side Interior Angles Theorem Notation/Name:	Description: If lines are parallel then same side interior angles are supplementary. Converse: If same side interior angles are supplementary then lines are parallel.	Examples: Non-Examples:
Diagram	Term Isosceles Triangle Theorem Notation/Name:	Description: If a triangle is isosceles, then the base angles are congruent. Converse: If a triangle has congruent base angles, then the triangle is isosceles.	Examples: Non-Examples:
Diagram B H D E	Term Vertical Angles Theorem Notation/Name:	Description: If two angles are vertical angles, then they are congruent.	Examples: Non-Examples:

N15 PROOF NOTE	S (Lomac 2015-2016)	NameN1
Term Angle Bisector	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		
Term Segment Bisector	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		
Term Midpoint	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		
Term	Diagram	What do I get out of having this information? (also 4.2 & 4.5
Parallel Lines		NOTES Lomac 2015-2016)
Abbreviation or Symbol		
Term Vertical Angles	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		
Term Linear Pair	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		
Term Triangle Sum	Diagram	What do I get out of having this information?
Abbreviation or Symbol None		

N16 PROOF NOT	ES (Lomac 2015-2016)	Name	N16
Term Reflexive Property	Diagram	What do I get out of having this information?	
Abbreviation or Symbol			
None			
Term Isosceles Triangle And Isosceles Triangle Theorem Abbreviation or	Diagram	What do I get out of having this information?	
Symbol None			
Term Perpendicular Lines Abbreviation or	Diagram	What do I get out of having this information?	
Symbol			
Term Exterior Angle Theorem	Diagram	What do I get out of having this information?	
Abbreviation or Symbol			
None			
Term Substitution of equal values	Example	What do I get out of having this information?	
Abbreviation or Symbol None			
Term Inverse operations	Example	What do I get out of having this information?	
Abbreviation or Symbol None			
Term ≅∆'s have ≅ corresp. parts	Diagram/Example	What do I get out of having this information?	
Abbreviation or Symbol None			

N17 SIMILAR	RITY NOTES (Lomac 2015-2016)	Name		N17
Diagram	Term Scale Drawing Notation/Name:	Description: A drawing in which all lengths of a figure are enlarged or reduced by the same scale factor or multiplier	Examples: Non-Examples:	
Diagram	Term Scale Factor Notation/Name:	Description: A number, r , that is multiplied by the lengths of a figure to enlarge the figure ($r > 1$) or reduce the figure ($0 < r < 1$)	Examples: Non-Examples:	
Diagram	Term Dilation Notation/Name:	Description: Figures are dilated from a center point using a scale factor. Image segments are parallel to preimage segments. (Image segment lengths) = (r)(preimage segment lengths)	Examples: Non-Examples:	
Diagram	Term Construction, Ratio, and Parallel Methods Notation/Name:	Description: Construction: measure and mark distances with a compass Ratio: measure with a ruler, multiply, and mark distances with a ruler Parallel: locate 1 point like the ratio method, then use 2 rulers to mark other points by making parallel lines	Examples: Non-Examples:	
Diagram	Term Side Splitter Theorem Notation/Name:	Description: A side splitter is parallel to a side of a given triangle and intersects the other two sides such that segments are proportional as follows: $\frac{EC}{EM} = \frac{ED}{EB}$ $\frac{EM}{MC} = \frac{EB}{BD}$	Examples: Non-Examples:	
Diagram	Term Similar Figures Notation/Name:	Description: Figures are similar if a similarity transformation maps one to the other. The figures will have congruent corresponding angles and proportional corresponding sides.	Examples: Non-Examples:	
Diagram	Term Similarity Transformation Notation/Name:	Description: A composition or sequence of transformations (one or more translation, reflection, rotation, and/or dilation) that maps one figure onto another	Examples: Non-Examples:	

N18 SIMILA	RITY NOTES (Lomac 2015-2016)	Name	N18
Diagram	Term SAS~ Notation/Name:	Description: Shortcut to show triangles are similar by showing that 2 pairs of corresponding sides are proportional and the angles between the sides are congruent	Examples: Non-Examples:
Diagram	Term AA~ Notation/Name:	Description: Shortcut to show triangles are similar by showing that 2 pairs of corresponding angles are congruent	Examples: Non-Examples:
Diagram	Term SSS~ Notation/Name:	Description: Shortcut to show triangles are similar by showing that 3 pairs of corresponding sides are proportional	Examples: Non-Examples:
Diagram	Term Hypotenuse, Opposite, Adjacent Notation/Name:	Description: Identifying sides of a right triangle for the purpose of using trigonometry. The hypotenuse is always across from the right angle and the opposite is always across from the reference angle	Examples: Non-Examples:
Diagram	Term Sine Notation/Name: $sin \theta = \frac{opp}{hyp}$	Description: A function whose input is the reference angle of a right triangle and whose output is the ratio of the opposite side to the hypotenuse.	Examples: Non-Examples:
Diagram	Term Cosine Notation/Name: $\cos \theta = \frac{adj}{hyp}$	Description: A function whose input is the reference angle of a right triangle and whose output is the ratio of the adjacent side to the hypotenuse.	Examples: Non-Examples:
Diagram	Term Tangent Notation/Name: $tan \theta = \frac{opp}{adj}$	Description: A function whose input is the reference angle of a right triangle and whose output is the ratio of the opposite side to the adjacent side.	Examples: Non-Examples:

N19 SIMILARITY & COORDINATE PROOF NOTES (Lomac 2015-2016)Name_

	ITY & COORDINATE PROOF NOTES		
Diagram	Angle of Elevation Notation/Name:	Description: The measure of an angle looking up from the horizon (horizontal)	Examples: Non-Examples:
Diagram	Angle of Depression Notation/Name:	Description: The measure of an angle looking down from the horizon (horizontal)	Examples: Non-Examples:
Diagram	Term Slope Notation/Name:	Description: Use this to determine whether lines are parallel (= slopes & different y-intercepts), perpendicular (opposite reciprocal slopes), or neither	Examples: Non-Examples:
Diagram	Term Distance Notation/Name:	Description: Use the Pythagorean Theorem to determine whether or not distances between points are equal (segments are(n't) congruent)	Examples: Non-Examples:
Diagram	Term Midpoint Notation/Name:	Description: Use this to find the point where one segment bisects another or to find a midpoint	Examples: Non-Examples:
Diagram	Term Slope Intercept form Notation/Name:	Description: A linear equation with y isolated on one side of the equation so that the slope can be seen as the coefficient of x and the y-intercept as the constant term.	Examples: Non-Examples:
Diagram	Term Directed Line Segment Notation/Name:	Description: A segment, generally on a graph, with endpoints defining a distance and an order (AB or BA) that specifies a direction	Examples: Non-Examples:

N20 COORDINATE PROOF & QUADRILATERAL NOTES (Lomac 2015-2016) Name_

N20 COORDII	NATE PROOF & QUADRILATERAL	NOTES (Lomac 2015-2016) Nan	1e
Diagram Diagram	Term Equation of a circle Notation/Name: Term Quadrilateral	Description: r is the radius of the circle and (h,k) is the center when the equation for the circle is written: Description: Definition: Polygon with 4	Examples: Non-Examples: Examples:
	Notation/Name:	sides Properties: sum of the angles is 360°	Non-Examples:
Diagram	Term Parallelogram Notation/Name:	Description: Definition: Quadrilateral with opposite sides parallel Properties: opposite sides equal, opposite angles equal, diagonals bisect each other	Examples: Non-Examples:
Diagram	Term Rhombus Notation/Name:	Description: Definition: Quadrilateral with 4 equal sides Properties: parallelogram plus diagonals bisect opposite angles and diagonals are perpendicular	Examples: Non-Examples:
Diagram	Term Rectangle Notation/Name:	Description: Definition: Quadrilateral with 4 right angles Properties: parallelogram plus diagonals are congruent	Examples: Non-Examples:
Diagram	Term Square Notation/Name:	Description: Definition: Quadrilateral with 4 right angles and 4 equal sides Properties: parallelogram, rhombus and rectangle	Examples: Non-Examples:
Diagram	Term Trapezoid Notation/Name:	Description: If two angles are vertical angles, then they are congruent.	Examples: Non-Examples:

N21 QUADRILATERAL & 3D NOTES (Lomac 2015-2016) Name

	ATERAL & 3D NOTES (Lomac 2015		N21
Diagram	Term Isosceles Trapezoid Notation/Name:	Description: A trapezoid with equal non- parallel sides	Examples: Non-Examples:
Diagram	Term	Description: Definition: Quadrilateral with 2	Examples:
	Notation/Name:	pairs of congruent consecutive sides Properties: perpendicular diagonals, one diagonal bisects the other, one diagonal bisects opposite angles	Non-Examples:
Diagram	Term General Cylinder Notation/Name:	Description: 3-dimensional shapes formed by congruent regions (bases) in parallel planes and all of the parallel segments that connect preimage points in one region to the image points in the other. (includes prisms)	Examples: Non-Examples:
Diagram	Term General Cone Notation/Name:	Description: General cones are 3- dimensional shapes formed by a region (B) in a plane and all segments from a single point (V) not on the plane to every point in the region (B). (includes pyramids)	Examples: Non-Examples:
Diagram	Term Sphere Notation/Name:	Description: The set of points equidistant from a single point in space (center point).	Examples: Non-Examples:
Diagram	Term Cavalieri's Principal 2D Notation/Name:	Description: If 2 figures have the same height and the same width at every point along the height, then the areas of the two figures are equal	Examples: Non-Examples:
Diagram	Term Cavalieri's Principal 3D Notation/Name:	Description: If 2 figures have the same height and the same area at every cross section along the height, then the volumes of the two figures are equal	Examples: Non-Examples: